Kolhapur Institute of Technology's College of Engineering, Kolhapur

(An Autonomous Institute)

Syllabus

For Final Year B.Tech

Computer Science & Engineering

Academic Year 2020-2021

SEM-I

													-	1
Title of	f the	Cour	se: Dis	tribute	ed Syst	ems					L	Т	Р	Cred
Course	e Coc	le:UC	SE07	01							3			3
Cours	se Pr	e-Req	uisite	: Knov	wledge	e of O	peratir	ng sys	tem, N	Jetwoi	rk Prog	gramm	ing	
Course	e Des	scripti	on: T	his co	urse a	ims a	t givin	ig stud	dents	a basi	ic knov	wledge	e of d	istribute
system	s, c	luster	com	puting	g, gri	d co	mputi	ng ai	nd cl	oud	compu	uting.	Emp	hasis d
commu	unica	tion b	etwee	n distı	ribute	d syste	ems ar	nd syn	chron	izatio	n algor	ithms		
Course	e Lea	rning	Obje	ctives	:									
1.	Uno	derstai	nd fou	ndatio	n of D	Distrib	uted S	ystem	S					
2.	Une	derstai	nd bas	ic con	cepts	of Gri	d Com	puting	g					
3.	Une	derstai	nd in c	letail t	he sys	tem le	evel an	id sup	port re	equired	d for di	istribu	ted sy	stem
4.	Une	derstai	nd prir	nciples	s of H	igh Pe	erform	ance (Compi	uting				
C	0													
Course	e Out	tcome	s:											
CO	٨	ftor t	ha car	nnlati	on of	tha co	urso t	ho stu	Idont	choul	d ha			
CO	 	hle to		npicu	UII UI		uise i	inc stu	luciit	Silvui	uDC			
	a													
601														
C01	E	xplain	founda	ation o	f Distr	ibuted	Systen	ns						
CO2		•					2							
~ ~ ~ ~	D	emons	trate d	ifferen	t syncł	nroniza	tion te	chniqu	les in d	istribu	ted Sys	stems		
CO3	C	ompar	e com	munica	ation ir	ı distri	buted s	system	s with	RPC				
CO4		· ·						<u>j</u>		-				
	D	iscuss	Paralle	el Prog	rammi	ng arc	hitectu	re						
CO-PC) Ma	pping	:											
		rre	,-											
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО	РО	РО	PSO	PSO
										10	11	12	1	2
CO1		1										1		
CO2		1		1								1		

CO3

CO4

Teacher Assessment:

1

1

1

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

1

1

1

Assessment	Marks
ISE-I	10
MSE	30
ISE-II	10
ESE	50

ISE-1 and ISE-2 are based on assignment/declared test/quiz/seminar/Group

Discussions etc. MSE: Assessment is based on 50% of course content (Normally first

three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:				
	Hrs.			
Unit 1: Principles of distributed computing Eras of computing, Elements of distributed computing – General concepts and definitions, architectural styles for distributed computing, Examples of distributed System.	6 Hrs.			
Unit 2: High Performance grid computing Introduction to grid, Open Grid Service Architecture (OGSA), Open Grid Service Infrastructure (OGSI), The Globus Toolkit 3 (GT3), OGSI.Net Middleware Solution.	7 Hrs.			
Unit 3: Distributed system Communication Fundamentals, Remote Procedure Call, Remote Method Invocation(RMI), Message-oriented communication, Message Passing Interface(MPI), Stream-oriented communication, Multicast communication.	06 Hrs			
Unit 4: Cluster Computing Scheduling parallel jobs on clusters, Load sharing and Fault tolerance manager, parallel programming scheduling techniques, Dynamic load balancing, Cluster System – Beowlf, COMPaS and NanOS.	06 Hrs			
Unit 5: Synchronization Clock Synchronization- Physical Clocks, Global Positioning System, Clock Synchronization Algorithms. Logical Clocks, Mutual Exclusion- A Centralized Algorithm, A Decentralized Algorithm, A Distributed Algorithm, A Token Ring Algorithm. Election Algorithms- Traditional Election Algorithms, Elections in Wireless Environments, Elections in Large-Scale Systems.	07 Hrs			

Unit 6 : Parallel Programming Concepts	06 Hrs
Levels of parallelism (instruction, transaction, task, thread, memory,	
function)Models (SIMD, MIMD, SIMT, SPMD, Dataflow Models,	
Demand-driven .Computation etc) Architectures: N-wide superscalar	
architectures, multi-core, multi-threaded.	
Textbooks:	

- 1. Distributed Systems: Principles and Paradigms- Tanenbaum, Steen.
- 2. The Grid Core Technologies", Maozhen Li, Mark Baker, (Wiley)
- 3. High performance cluster computing vol 1 rajkumarbuyya
- 4. DISTRIBUTED SYSTEMS Concepts and Design Fifth Edition George Coulouris Pearson Education, 2012.

References:

- 1. Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India, 2007.
- 2. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 3. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufman Publishers, USA, 2003.

Title of	the Course: Advanced Database Systems	L	Τ	Р	Credits
Course	Code: UCSE0702	3			3
Course	Pre-Requisite: Database Engineering	I	1		
Course	Learning Objectives:				
1.	To understand the fundamentals of object oriented databases.				
2.	To evaluate and distinguish the different types of advanced da	tabases	5.		
3.	To understand and perform common database administratio	n and	securi	ty tas	ks.
4.	To understand the usage of advanced data models				
Course	Outcomes:				
COs	After the completion of the course the student will be				
	able to				
CO1	Understand and identify issues arising from parallel and				
	distributed processing of data				
CO2	Select appropriate database and construct solution to real world problems of storing large data.				
CO3	Compare and Contrast NoSQL databases with each other and Relational Database Systems				
CO4	Make use of XML,SQL cursors, triggers, stored	_			
	procedures and procedural SQL to write complex SQL scripts				
CO5	List database administration tasks and security measures				
<u> </u>					
Assessr	nents :				
Teache	r Assessment:				
Two co	imponents of In Semester Evaluation (ISE), One Mid Ser	nester	Exan	ninatio	on (MSE)
and one	End Semester Examination (ESE) having 20%, 30% and 5	0% we	eights	respe	ctively.
Assess	sment Marks				

Assessment	Marks
ISE-I	10
MSE	30
ISE-II	10
ESE	50
ISE will be based on assignment/declared test/	auiz/seminar/Group Discussions etc

ISE will be based on assignment/declared test/quiz/seminar/Group Discussions etc. ESE: Assessment is based on 100% course content with 60-70% weight course content.

Unit 1: Object Oriented Databases	6
Overview, Complex Data Types, Structure Types and Inheritance in SQL, Table Inheritance, Arrays and Multiset Types in SQL, Object-Identity and Reference Types in SQL, Implementing O-R Features, Persistent Programming Languages, Object- Relational Mapping, Object-Oriented versus Object-Relational	Hrs
Unit 2: Parallel and Distributed Databases	8
Database System Architectures: Centralized and Client – Server Architectures – Server System Architectures – Parallel Systems – Distributed Systems – ParallelDatabases: I/O Parallelism – Inter and Intra Query Parallelism – Inter and Intra operation Parallelism – Design of Parallel Systems – Distributed Database Concepts – Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control – Distributed Query Processing – Case Studies.	Hrs
Unit 3: Advanced SQL	7
ORACLE sequences. Procedural SQL-Triggers, Stored Procedures, PL/SQL, Cursors.Embedded SQL – Dynamic SQL.XML Databases- DTD and XML Schemas, XML presentation, XML Applications.	Hrs.
Unit 4: NoSQL Databases	8
Introduction, Data management with distributed databases, ACID and BASE NoSQL Types: Key-Value Database, Document Database, Column Family Database and Graph DatabaseComparison of relational databases and NoSQL	Hrs.
Unit 5: Database Administration and Security	5
Database Administration Function. Database Administration Tools-Data dictionary, CASE tools.Database Security-Security policies, vulnerabilities and measures. Case Study: DBA using ORACLE database administration.	Hrs.
Unit 6: Business Intelligence and Data Warehouses	8
The Need for Data Analysis, Business Intelligence, Business Intelligence Architecture, Decision Support Data, Online Analytical Processing, Star Schemas, Implementing a Warehouse, Data Mining, SQL Extension for OLAP.	Hrs.
Text Books:	
1. Database system concepts – Silberschatz, Korth, Sudarshan – 6th Edition (MGH)	
2. Database Management System – Raghu Ramkrishnan (MGH).	
3. Database Systems, Design, Implementation and Management - Coronel-Morris- Rob	

4. NoSQL for Mere Mortals- Dan Sullivan- 1st Edition, Pearson Education

Reference Books:

- 1. Database Systems Elmasri and Navathe 5th edition, Pearson Education.
- 2. Advanced Database Management System Rini Chakrabarti Shilbhadra Dasgupta
- NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence -Pramod J. Sadalage, Martin Fowler-1st Edition, Pearson Education

Title of	the Course: Professional Elective-III (Natural Language Processing)	L	Τ	Р	Credit			
Course	Code: UCSE0721	3	-	-	3			
Course I	Prerequisites: Formal Languages Theory, Probability, Natural Language Fea	atur	es					
c				T. 1	<u>.</u>			
Course I	Description: This course introduces different algorithms for natural language pro	ocess	sing	, It also	o gives an			
overview	of different applications of natural language processing.							
Course	Learning Objectives:							
1 To inf	roduce the field of Natural Language Processing to the students							
2 To int	roduce the algorithms of syntax analysis of natural languages to the studen	nts						
3 To int	roduce the algorithms of semantics analysis of natural languages to the stude	iden	ts					
4.To giv	e an overview of the applications in the field of natural language processir	ng						
0		0						
Course	Outcomes:							
CO	After the completion of the course the student should							
CO	he able to							
COL	explain phases in the processing of natural languages							
CO1	complex algorithms for sympton analysis of natural languages							
CO_2	appry algorithms for somertic analysis of natural languages							
COS								
CO4	iaiiguages							
C04	L and the problems for application of Natural							
<u> </u>	Language Processing							

CO-PO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO 12	PSO1	PSO2
CO1	1													
CO2	2	2												
CO3	2	2												
CO4				1										1

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
UNIT-I : Introduction: Knowledge in Speech and Language Processing, Ambiguity, Models and Algorithms, Language, Thought and Understanding, N-grams, Part-of-speech tagging	06 Hrs.
UNIT-II: Syntax Analysis: Dynamic Programming Parsing Methods, Partial Parsing, Probabilistic Context Free Grammars,Probabilistic CKY parsing of PCFG's, Learning PCFG Rule Probabilities, Problems and solutions of PCFG's	07 Hrs.
UNIT-III: Representing Semantics: Formal Meaning Representation, First-Order Logic, Representing Events and States, Syntax-Driven Semantic Analysis, Semantic Augmentations to Context-Free Grammar Rules, Quantifier Scope Ambiguity and Underspecification, Unification-Based Approaches to Semantic Analysis	07 Hrs.
UNIT-IV: Computational Lexical Semantics: Relations between Senses, WordNet: A Database of Lexical Relations, Word Sense Disambiguation, Supervised Word Sense Disambiguation, WSD: Dictionary and Thesaurus Methods	07 Hrs.
UNIT-V: Computational Discourse: Discourse Segmentation, Text Coherence, Reference Resolution, Reference Phenomena, Features and Algorithms for Pronominal Resolution	08 Hrs.
UNIT-VI: Applications: Named Entity Recognition, Relation Detection and Classification, Biomedical Information Extraction, Basic Dialogue Systems	05 Hrs.
Textbooks: 1. Speech and Language Processing- Daniel Jurafsky, James H. Martin	I
 References: 1. Natural Language Understanding- James Allen 2. Introduction to Natural Language Processing - Jacob Einstein 3. Natural Language Processing with Python - Bird, Klein, Loper 	

Title of the Course: High Performance Computing	L	Т	Р	Credit
Course Code: UCSE0722	3	-	-	3

Course Pre-Requisite:

1. Computer Organization 2. Computer Algorithms

Course Description: This course covers the design of advanced modern computing systems. In particular parallel computers and their architectures. It also helps users to choose different parallel programming models for different applications. In this course students are exposed parallel programming tools such as openMP, MPI and CUDA through which simple parallel programs can be written.

Course Learning Objectives:

1. To introduce the current trends in computer architecture and programming model.

- 2. To understand and appreciate parallel program design methodologies.
- 3. To solve basic parallel problems using MPI, OpenMp and GPU.

Course	e Outcomes:
CO	After the completion of the course the student should be
	able to
CO1	Explain different parallel architectures models and terminologies of high
	performance computing
CO2	Choose design methodologies and parallel algorithms for optimization of real
	world problems.
CO3	Write and analyze the behaviour of high performance parallel programs for
	distributed memory architectures using MPI, Pthreads and OpenMP and can
	write simple programs for the GPU.

CO-PO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	2	2	2	-	-	-	-	-	-	-	-
CO3	3	3	2	2	2	-	-	-	-	-	-	-

CO-PSO Mapping:

CO	PSO 1	PSO 2
CO1	-	-
CO2	2	2
CO3	-	3

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks							
ISE 1	10							
MSE	30							
ISE 2	10							
ESE	50							
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussions	etc.						
MSE: Assessment is based on 50% of course c	ontent (Normally first three modules)							
ESE: Assessment is based on 100% course con	tent with60-70% weightage for course co	ontent						
(normally last three modules) covered after MS	SE.							
Course Contents: 38 Hours								
UNIT I: Introduction to Parallel hardware an	d software, need for high performance	06 Hrs.						
systems and Parallel Programming, SISD, SIM	ID, MISD, MIMD models, Performance							
issues.								
UNIT II: Processors, PThreads, Thread Cr	reation, Passing arguments to Thread	08 Hrs.						
function, Simple matrix multiplication using	g Pthreads, critical sections, mutexes,							
semaphores, barriers and conditional vari	iables, locks, thread safety, simple							
programming assignments.								
UNIT III: Open MP Programming: introduct	tion, reduction clause, parallel for-loop	06 Hrs.						
scheduling, atomic directive, critical sections and locks, private directive,								
Programming assignments, n body solvers usin	ng openMP	L						
UNIT IV: Introduction to MPI programmin	g: MPI primitives such as MPI_Send,	08 Hrs.						
MPI-Recv, MPI_Init, MPI-Finalize, etc., Ap	plication of MPI to Trepizoidal rule,							
Collective Communication primitives in MPI	I, MPI derived datatypes, Performance							
evaluation of MPI programs, Parallel sorting	g algorithms, I ree search solved using							
MPI, Programming Assignments.		0 C II						
UNIT V: Introduction to GPU computing	g, Graphics pipelines, GPGPU, Data	06 Hrs.						
Parallelism and CUDA C Programming, CUD	A Infeads Organization, Simple Matrix							
INIT VI. Darah Marking and Taala	for High Donformon on Computing	0411						
Environments Numerical Linear Algebra I	Poutines PLAS for Parallal Systems	04 mrs.						
evaluation	Routines BLAS for Faraner Systems							
Taythooks:		<u> </u>						
1 An Introduction to Parallel Programming	Peter S Pacheco, Elsevier 2011							
 Programming Massively Parallel Processo 	rs Kirk & Hwn Elsevier 2012							
References.	15, Kirk & 11wu, 1150viel, 2012							
1 CUDA by example: An introduction to Ge	neral Purpose GPU Programming Jason	Sanders						
Edward Kandrit Perason 2011	nerui i uipose or o i rogramming, suson	, builders,						
2 CUDA Programming Shame Cook Elsevi	er							
3. High Performance Heterogeneous Computi	ng. Jack Dongarra. Alexev &Lastovetsky	. Wilev						
		,						

4. Parallel computing theory and practice, Michel J.Quinn, TMH

Title of	f the (Cours	e: Sof	ftware	e Defi	ned N	etwor	·k			L	Т	Р	Credit
Course	e Cod	e: (U(CSE07	723)							3	-	-	3
Course	Prere	equisit	e: Con	nputer	· Netw	orks.								
Course	Descr	ription	: This	course	e gives	insigh	ts of p	rogran	ımable	netwo	ork ma	nagem	ent tech	nology.
Course	e Lea	rning	Obje	ctives	: Stuc	lents	will b	e expo	sed to):-				
1. The	concep	pt of S	oftwar	e Defii	ned Ne	twork	(SDN)) vs Tr	adition	al Netv	work.			
2. Fund	lamen	tal Cha	racter	istics o	of SDN									
3. Spec	ificati	on of (Jpen F	low.										
4. App		n of SI	JN.											
Course	e Out	comes	:											
CO	Aft	er the	e comj	pletio	n of th	ie cou	rse th	e stud	lent s	hould	beabl	le to		
601		× 0	0	D.C	1 1 1	1								
	Define Software Defined Network. Explain fundamental concepts of SDN													
CO 2	2 Explain fundamental concepts of SDN.													
<u>CO3</u>	 Interpret OpenFlow Specification and its limitations. 													
CO4	CO4 Evaluate the network virtualization functions.													
	CO-PO Manning													
	D Maj	ping		DO	DO	DO	DO	DO	DO	DO	DO	DO	DCO1	DEO1
	РО 1	PU 2	PU 3		FU 5	rU 6	PU 7	PU 8	PU Q	PU 10	rU 11	12	P501	r 502
C01	1	2	5	-	3	U	/	0	,	10	11	12		
$\frac{cor}{cor}$	2												2	
C02	2	2			1								2	
C03	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										2	1		
04			2										2	1
Assess Teache Two co and one	ments er Ass ompor e End	s : sessme nents o Semes	e nt: of In S ster Ex	emest camina	er Eva ation (aluatic ESE)	on (ISI havin	E), On g 20%	e Mid , 30%	Seme and 5	ster E 0% w	xamir eights	nation (N respect	MSE) tively.
Asses	sment	Ţ						Marks						
ISE 1								10						
MSE								30						
ISE 2								10						
ESE								50						
ISE 1 a	nd IS	E 2 ar	e base	ed on a	assign	ment/c	declare	ed test	/quiz/	semina	ar/Gro	oup Di	scussio	ns etc.
MSE: A	Assess	sment	is bas	ed on	50% c	of cou	rse co	ntent (Norm	ally fi	rst thr	ee mo	dules)	
ESE: A	ssess	ment i	s base	ed on 1	100%	course	e conte	ent wi	th 60-'	70% w	veight	age fo	r course	5
content	: (norr	nally	last th	ree mo	odules	s) cove	ered at	fter M	SE.					
Course	e Con	tents:												
Unit 1:	- Intr	oduc	tion to) Netv	vorkii	1g: OS	SI laye	ers; TO	CP/IP	Protoc	ol Sui	ite;		6Hrs.
Distanc	e vec	tor an	d link	state	routin	g algo	rithms	s, Netv	vork p	orotoco	ols (A	RP, B	GP,	
OSPF,	RIP, I	[CMP]) and 1	netwo	rk top	ologie	s, lim	itation	s of tr	adition	nal ne	twork		
Unit 2:	- Intr	oduc	tion to) SDN	: Ove	rview	of Tra	aditior	nal Ne	tworks	s and			8 Hrs.
limitati	ons,H	listory	and e	voluti	on of	SDN,	Archi	tectur	e of S	DN, C	ontrol	l plane	e and	
data pla	ane se	parati	on, Ao	dvanta	iges ar	nd Dis	advan	tages.						
Unit 3:	- Wo	rking	of SD	N: Fu	ındam	ental	Chara	cterist	ics of	SDN,	SDN	Operat	tion,	7 Hrs.
SDN D	evice	s, SDI	N Con	troller	, SDN	V App	licatio	ns, Ne	etwork	virtua	alizati	on.		
Unit 4:	- Ope	en Flo	w: Int	troduc	tion, v	vire p	rotoco	l, Rep	licatio	n, FA	WG			7 Hrs.
(Forwa	rding	Abstr	action	Work	kgroup	o), con	figura	tion a	nd Ex	tensib	ility,			
Archite	ecture,	, Oper	n Flow	⁷ Limi	tation	S.								

Unit 5:-Network Function Virtualization: Introduction of NFV, Need of NFV,	7 Hrs.
NFV Framework, NFV Architecture, NFV Management and Orchestration, NFV	
and SDN.	
Unit 6:-SDN Applications: Using the Floodlight Controller, Using the	6 Hrs.
OpenDaylight Controller, Use Cases of SDNs: Backbone Networks, Home	
Network, Traffic Engineering.	
Textbooks:	
1. Paul Goransson and Chuck Black, "Software Defined Networks: A Compreh	ensive
Approach", Morgan Kaufmann, 2014.	
2. SDN: Software Defined Networks, An Authoritative Review of NetworkProgramm	ability
Technologies, By Thomas D. Nadeau, Ken Gray Publisher: O'Reilly Media	
References:	
1 SiamakAzodolmolky, "Software Defined Networking with OpenFlow", Packt Publishing,	2013
2 Kingston Smiler, "OpenFlow® Cookbook", Packt Publishing, 2015	
3 Doug Marschke, Jeff Doyle, Pete Moyer, "Software Defined Networking (SDN): Anatom	y of
OpenFlow® Volume I". Lulu Publishing Services, 2015	

Title	of the (Course	: Prof	fession	al Ele	ital		L	Т	Р		Credi	t			
Image	e Proce	essing)		3	-	-	3									
Cours	se Cod	e: UCS	SE072	4												
Cours	se Pre-	Requis	site:													
1. Lin	ear Alg	gebra														
2. Cal	culus															
3. Pro	gramm	ing in	С													
Cours	se Des	criptio	n: Thi	is cour	rse ain	ns to in	ntrodu	ce fund	lamen	tal c	oncep	ts of	Dig	ital Im	age	
proces	ssing.	It will	start	with	repres	entatio	n of i	mages,	data	struc	tures	and	ever	ntually	go	
towar	ds stan	dard in	mage	proces	ssing t	asks si	uch as	variou	ıs ima	age e	nhan	cemer	nt, re	estorat	ion,	
image	e compr	ession	, etc. I	t will a	also inc	clude s	ome ac	lvanced	l topio	es su	ch as	Image	e seg	menta	tion	
techni	iques															
Cours	se Objo	ectives	:													
1. To	introdu	ce the	studen	it to va	rious i	image p	process	sing tecl	hniqu	es.						
2. To	cover b	basic ar	nalytic	al metl	hods w	which a	re wide	ely used	1 in in	nage	proce	ssing				
3. To encourage to apply image processing algorithms to real problems.																
Course Learning Outcomes:																
Cours	se Leai	rning (Dutcor	nes:									_			
	CO After the completion of the course the student should be															
			able to													
		CO1	Exp	Explain the image processing fundamentals												
		~ ~ ~	~													
		CO2	Sum	marıze	ediffer	entima	gepre-	•								
			proc	essing	andfill	teringte	echniq	uestoer	nhanc	ethei	mage	qualit				
		~~~	У							-						
		CO3	App	lyımag	ge com	pressio	on and	segmen	ntation	n Tec	hniqu	les.	_			
		CO4	Mak	e use c	of imag	ge proc	essing	technic	ques f	or so	lving					
			prob	lems 11	n comp	puter so	cience									
CO-P	'O Maj	oping:			1					_				1	_	
	CO	PO	PO	PO	PO	PO	PO	PO	PO	PC	) P	0 1	<b>PO</b>	PO		
		1	2	3	4	5	6	7	8	9	1	0 1	1	12		
				L											_	
	CO1	2													_	
	CO2	2	2													
	CO3	2														
	CO4		2	3	2											
Asses	sments	::														
Teach	ier Ass	essme	nt:													
Two c	compon	ents of	f In Se	mester	Evalu	ation (	ISE), (	One Mi	d Sen	nester	Exa	ninati	on (	MSE)	and	
one E	ndSem	ester E	xamin	ation (	ESE) l	having	20%, 3	30% and	d 50%	6 wei	ghts 1	respec	tive	ly.		
Asse	essment						Maı	rks								
ISE	1						10									
MSE	3						30									
ISE 2	2						10									
ESE							50									
ISE 1	and IS	E 2 are	based	on as	signme	ent/dec	lared to	est/quiz	z/semi	nar/(	Group	Disc	ussic	ons etc.	•	
MSE:	Assess	sment i	s base	d on 50	0% of	course	conter	t (Norr	nally	first	three	modu	les)			
ESE:	Assess	ment is	based	l on 10	0% co	urse co	ontent v	with60-	-70%	weig	htage	for co	ourse	e conte	nt	
(norm	ally las	st three	modu	les) co	vered	after M	ISE.			-	-					

Course Contents:	
Unit 1:-Introduction	7 Hrs
What is Image processing? Examples.	
FundamentalStepsinDigitalImageProcessing,ComponentsofanImageProcessingS	
ystem,SamplingandQuantization,RepresentingDigitalImages(Datastructure),So	
meBasicRelationshipsBetweenPixels-	
NeighborsandConnectivityofpixelsinimage	
Unit 2:-ImageEnhancement in the Spatial Domain:	6 Hrs
Some basic Gray level Transformations, Histogram Processing, Enhancement	
using Arithmetic/Logic Operations, Spatial Filtering, Smoothing Spatial Filters,	
Sharpening Spatial Filters, Combining Spatial Enhancement methods.	
Unit 3:-Image Enhancement in the Frequency Domain:	6 Hrs.
Fourier Transform and the Frequency Domain. Smoothing Frequency-Domain	
Filters, Sharpening Frequency Domain Filters, Homomorphism Filtering,	
Implementation.	
Unit 4:-Image Restoration:	7 Hrs.
Image Degradation/Restoration Process, Linear, Position-Invariant Degradations,	
Inverse Filtering Minimum Mean Square Error (Wiener) Filtering Constrained	
Least Squares Filtering	
Wavelets and MultiResolution Processing · MultiResolution Expansions Wavelet	
Transforms in One dimension The Fast Wavelet Transform Wavelet Transforms	
in Two Dimensions.	
Unit 5 ImageCompression	7 Hrs.
Image Compression: Image Compression Models Error-Free Compression Lossy	
Compression Image Compression Standards Image Segmentation: Detection of	
Discontinuities Edge Linking and Boundary Detection Thresholding Region-	
Based Segmentation	
Unit 6: ImageSegmentation:	7 Hrs
Introduction Detection of isolated points linedetection Edgedetection Edgelinking	/ 111 5.
Regionbasedsegmentation Regiongrowing splitandmarge	
technique local processing regional processing Houghtransform Segmentationusi	
ngThreshold	
Toythooks:	
1 Rafael C Gonzalez Richard F. Woods: "Digital Image Processing 'Addison Wes	lev Pubs
(Second Edition) 2007	icy i ubs
2 Milan Sonka Vaclay Hlavac Roger Boyle Image Processing Analysis and Mach	nine
Vision (Second Edition 2003)	lille
References.	
1 Fundamentals of Digital Image Processing- Anil K Jain 2nd Edition Prentice He	all of
India	
2 S Sridhar Digital Image Processing Oxford University Press 2nd Ed 2016	
Module6: Toextractfeatures in the image using segmentation techniques	
inouries. reextracticatures intromageus ingsegnentation teeninques	

Title	Title of the Course: OE-II Basics of Network EngineeringLTPCredit														
Course Code:UOEL0711     3       3       Course Pre-Requisite: Students shall have very basic information of computers periph													3		
Cour	<b>Course Pre-Requisite</b> : Students shall have very basic information of computers, peripheral														
devic	devices, Internet.														
Cour	Course Description: In this course student will learn about configuring network and														
servic	es.														
Cour	se Lea	arnin	g Obj	ective	s: Stu	idents	s will	be exp	posed	to:					
1.	Linu	лх Ор	eratin	g Syst	em.										
2.	Net	work	conce	pts and	d cont	figura	tions.								
3.	Net	work	Servic	e Con	figura	ation e	eg. We	eb Ser	ver, F	TP Se	erver.				
4.	Adr	ninisti	ration	of Ser	rvers.										
Cour	se Ou	tcom	es:												
CO	CO After the completion of the course the student should be														
able to															
CO	CO1 List Operating System available for Networking Service.														
CO2	CO2     Explain concepts of network engineering.														
CO3	3 S	olve n	etwor	king p	oroble	ms in	the or	ganiz	ation.						
CO4	l B	uild c	ustom	solut	ion to	addre	ess the	netw	orking	g requ	ireme	nts o	f orgar	izati	on.
	o M		~.												
CO-PO Mapping:															
														1	٦
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO	
									ļ	10		12	-	-	_
CO1					1							1	3	1	
602													-		-
02		1										1	3	2	
CO3	3	1	3	2	3	2			1			3	3	3	7
	-	-	-	-	-	-			<b></b>			Ŭ	-	ľ.	_
CO4	3	1	3	2	3	2			1			3	3	3	
A 6606	smon	ta •													
Asses	her A	13.	nent:												
Two	compo	onents	of In	Seme	ster E	valua	tion (I	SE) (	One M	fid Se	meste	r Exa	minat	ion (1	MSE)
and o	ne En	d Sem	ester	Exam	inatio	n (ES	E) hay	/ing 2	0% 3	0% ar	nd 50%	% we	ights r	espec	tively
Asse	essmer	nt						Mai	rks	0 / 0 41	14007	••		-sp	<u></u>
ISE	1	-						10							
MSE	3							30							
ISE	2							10							
ESE								50							
ISE 1	and I	SE 2 a	are bas	sed or	assig	nmen	t/decl	ared to	est/qu	iz/sen	ninar/	Grou	p Disc	ussio	ns etc.
MSE:	Asse	ssmen	t is ba	used of	n 50%	6 of co	ourse o	conter	nt (No	rmally	y first	three	modu	les)	
ESE:	Asses	sment	t is ba	sed or	n 100%	6 cou	rse co	ntent	with6	0-70%	b weig	shtage	e for co	ourse	content
(norm	ally l	ast thr	ee mo	dules	) cove	ered af	fter M	SE.							
Cour	se Co	ntent	5:												
Uni1:	-Intro	ductio	n: In	troduc	ction	to Li	nux (	Dperat	ing S	ystem	n. Op	en S	ource	and	4 Hrs.
Freew	are so	oftwar	e. Ins	tallati	on of	Linux	K, KD	E & C	GNOM	1E En	viron	ment	, Sessi	ons,	
instal	ling m	nultim	edia s	uppor	t, ope	n-offi	ce suit	t.							
TT	<u>т.</u>	01	11 0	<b>F</b> '1 C	14 -	~		1 1	1					<u>C1</u>	TT
Unit	2:- Lir	iux Sh	nell &	File S	structu	ire: C	omma	nds- l	s, cd,	cp, m	v etc,	man	pages,	file	Hrs.

structure, Pipes, Job management. Shell Scripts – variables, set, unset, environment variables	
Unit 3:- Networking:- Basics- IP address, Gateway, mask, Networking Utilities-	Hrs.
ping, arp, network manager, routes, nmap. Concept of Ports, protocols, TCP/IP	
model. Trouble shooting networking connectivity issues.	
Unit 4:- Services:- Configuration of Apache web Server, FTP Server, DHCP	Hrs.
Server.	
Unit 5:- Firewall:- IP tables firewall rules configuration to – block/allow selected	Hrs.
packets, TCP/UDP packets, ports, protocols.	
Unit 6:- Packets Forwarding: Port Forwarding, Masquerading.	Hrs.
Textbooks:	<u> </u>
1. The Complete Reference Linux by Richard Petersen, McGraw Hill Education	
References:	
1. https://www.netfilter.org/	
2. https://www.apache.org/	
3. https://www.linux.org/	

Title of the Course: Software Systems	L	Т	Р	Credit								
Course Code: UOEL0712	3	-	-	3								
Course Pre-Requisite: :		•										
Course Description: In Software Systems students will lea	rn neo	cessar	y too	ls and								
techniques required for report writing and project management. This course will												
empower students with knowledge and practices that will help student in versioning												
project, testing authenticity of work, generating reports												
and developing build for deployment of project.												
CourseLearning Objective To give exposure to students												
1. Various research project report writing tools.												
2. Checking research work for genuinely and authenticity.	tua alr			•								
3. Different project management tools which can be used to track and manage												
Course Learning Outcomes: Students will be able to												
1 Select research project report writing tools												
2 Make use of plagiarism testing tools for checking research	h worl	z for										
zenuinity and authenticity	II WUII	X 101										
3 Use project management tools to track and manage progr	ess of	proie	et									
	• • • • • • •	proje										
CO After the completion of the course the student should be able to												
CO 1 Select research project report writing tools.												
CO 2 Make use of plagiarism testing tools for checking research work authenticity.	for genu	inely a	and									
CO3 Make use project management tools to track and manage project.	progres	s of										
CO-PO Mapping:												

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1					2							
CO2					3			2				
<b>CO3</b>											2	

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively. ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Assessment	Marks
ISE 1	10

MSE	30	
ISE 2	10	
ESE	50	
Course Contents:		
Unit 1:Effective Report Writing: LateX- us	sing document classes.	6 Hrs.
Inserting		
graphics, tables, references, TikZ- creating d	liagrams- flowcharts, workflow	
etc.		
Unit 2: Language Checking Tools: Langua	ge Checking - grammar	2 Hrs.
correction in		
document, proper use of verbs according to s	subject, Proper use of articles.	
Use of active and passive voice use of tools	like grammarly.	2.11
Unit 3:Plagiarism DetectionS what is plag	arism, how to test article for	3 Hrs.
plagiarism, avoiding self plagiarism, use of t	ools like viper, turnitin,	
Intenticate etc.	inin a mais at warsians	5 IIm
Unit 4:Project Management Tools. Mainta	aining project versions	5 HIS.
project	git, svilete to manage	
progress Project Tracking Techniques- such	as Agile SCRUM	
Unit 5:Data Visualization and Analysis Te	chniques: Use of R and python	4 Hrs
for	eninques. Obe of it and python	1 1115.
data analysis, use of PvPlot, GNUPlot for da	ta visualization and	
analysis technique.		
Unit 6:Build Management Systems: Study	of various build management	4 Hrs.
systems- such as make, make install, WAF,	configure etc.	
Textbooks:		
1. LaTeX: A Document Preparation Sys	tem (2nd Edition)by Leslie Lamp	port
2. Learning Agile by Andrew Stellman&	k Jennifer Greene	
3. Learning Python: Powerful Object-Or	riented Programming 4th Edition	by Mark
Lutz		
4. R for Data Science: Import, Tidy, Tra	insform, Visualize, and Model	
Data 1st Edition by Hadley Wickham, Garre	tt Grolemund	
References:		
1. Git online documentation. <u>https://git-s</u>	<u>cm.com/docs/git-help</u>	
2. Pyplot onlinedocumentationhttps://ma	atplotlib.org/api/pyplot_api.html	

Title of the Course: AdvancedDatabase System	is Lab	L	Т	Р	Credit
Course Code: UCSE0731		-	-	2	1
Course Pre-Requisite: RelationalDatabases, Pr	ogramming Language	e			
<b>Course Description:</b> This course is designed	to develop advanc	ed da	tabase	man	agement and
administration skills. It provides practical kn	owledge of OODB.	XML	and	NoSO	L databases.
parallel and distributed database transactions.	database security and	d anal	vsis o	f data	with OLAP
operations.			<i>J</i> = = = = =		
CourseLearning Objectives:					
1. To understand Fundamental Concepts parallel	l and distributed trans	action	proce	essing	
2. To present the concepts and techniques of OC	ODB. XML and NoS	OL wi	th itsi	mpler	nentations.
3. To present procedural interfaces to SOL comp	orehensively			1	
4. To give an introduction to database administra	ation and security				
5. To give a formal foundation on the data analy	sis and business intel	ligenc	e		
Course Outcomes:			-		
<b>CO</b> After the completion of the course the	e student should be				
able to					
CO1 Design and create OO XML and NoSO	I databases for given				
scenario	L databases for given				
CO2 Duild DI /SOL blocks including stored	procedures stored				
Bund FL/SQL blocks including stored	procedures, stored				
functions, cursors, triggers					
CO3 Demonstrate parallel and distributed tra	nsaction processing a	ind			
data analysis with SQL extension.					
CO4 Make use of database administration and	d security policies				
Assessments :					
Teacher Assessment:					
Two components of In Semester Evaluation (ISI	E) and one End Seme	ster Ex	kamin	ation	ESE) having
33%, and 67% weights respectively.					
Assessment	Marks				
ISE	50				
ESE - POE	50				
ISE are based on practical performed/ Quiz/ Mir	ni-Project assigned/ P	resent	ation/	Group	Discussion/
Internal oral etc.				-	
ESE: Assessment is based on practical-oral exam	nination.				
-					
Course Contents:					
Experiment No. 1: Remote Database Connection	on				02 Hrs.
Aim and Objectives: Make database connectio	n to remote database	for de	emons	tratior	L
of distributed database					
Theoretical Background: Knowledge of distri	ibuted database stora	ge and	l trans	action	L
processing		C			
<b>Experiment No. 2:</b> Parallel join/sort algorithm	l				02Hrs.
Aim and Objectives: Demonstrate parallel quer	y processing				
<b>Theoretical Background:</b> parallel query proces	sing				
<b>Experiment No. 3:</b> Object Oriented Databases	0				04 Hrs.
Aim and Objectives: Create and manage object	t oriented databases				

Experiment No.4: XML Database02Hrs.Aim and Objectives: Create and manage a semi structured database.02Hrs.Theoretical Background: SQL, XML, XPath and XQuery04Hrs.Experiment No. 5: PL/SQL04Hrs.Aim and Objectives: Make use of PL/SQL to build procedures, functions triggers and04Hrs.
Aim and Objectives: Create and manage a semi structured database.Theoretical Background: SQL, XML, XPath and XQueryExperiment No. 5: PL/SQLAim and Objectives: Make use of PL/SQL to build procedures, functions triggers and
Theoretical Background: SQL, XML, XPath and XQuery       04Hrs.         Experiment No. 5: PL/SQL       04Hrs.         Aim and Objectives: Make use of PL/SQL to build procedures, functions triggers and       04Hrs.
Experiment No. 5: PL/SQL04Hrs.Aim and Objectives: Make use of PL/SQL to build procedures, functions triggers and
Aim and Objectives: Make use of PL/SQL to build procedures, functions triggers and
cursors to perform in database processing of data
Theoretical Background: SOL.PL/SOL
Experiment No. 6: OnLine Analytical Processing 02Hrs.
Aim and Objectives: Make use of OLAP tools for demonstration of data analysis.
Theoretical Background: OLAP, Data warehouses, DSS, BI
Experiment No. 8: NoSQL Database creation 06Hrs.
Aim and Objectives: Create and manage NoSOL Databases
Theoretical Background: NoSOLconcepts
Experiment No. 7: Database Administration 02Hrs.
Aim and Objectives: Demonstrate database administration by creating users and roles
<b>Theoretical Background:</b> Role of database administrator
Experiment No. 8: Database security 02Hrs.
Aim and Objectives: Implementation of security policies(MAC and DAC)
Theoretical Background: Mandatory access control and discretionary access control.
Textbooks:
1. DataBase System Concept by Henry F. Korth, Abraham Silberschatz, Sudarshan (McGraw
Hill Inc.) 6 th Edition.
2. Database Systems- A practical approach to Design, Implementation and Management by
Thomos Connolly, Carolyn Begg, 3 rd Edition, Pearson Education
3. NoSQL for Mere Mortals- Dan Sullivan- 1 st Edition, Pearson Education
References:
1. Fundamentals of Database Systems – by RamezElmasri and ShamkantNavathe
Publisher -Pearson Education, 5 th Edition.
2. Database Systems : Design, Implementation and management PeterRof, Carlos Coronel
Publisher - Cengage Learning.
3. Principles of Database Systems by J.D. Ullaman (Galgotia Publications)
4. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence - Pramod J.

Sadalage, Martin Fowler-1st Edition, Pearson Education

Title of	the Course: Web Technology LAB	L	Т	Р	Credit
Course	Code: UCSE0732	3	-	4	5
Course ]	Pre-Requisite: Advanced Programming Laboratory, HTML and CSS				
Course tools. It o	<b>Description:</b> Web Technology subject mainly deals with emerging vectors HTML,CSS, JSP, Servlet and Spring Boot MVC Technology.	web tec	chnolog	gy cor	cepts and
Course	Learning Objectives:				
To ex	pose students to:				
1.	Client Server technologies				
2.	Server side technologies				
3.	RESTful web services				
Course	Outcomes:				
СО	After the completion of the course the student should be able	e to			
CO1	Apply knowledge of client side scripting				
CO2	Demonstrate use of server side technologies				
CO3	Design web application using MVC architecture.				
CO4	Develop RESTful web application using server side technologies				
L					

# **CO-PO Mapping:**

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	-	3	-	-	1	-	-	-	1	1	-
CO2	1	2	3	1	3	-	-	1	-	-	-	2	2	1
CO3	1	2	3	2	3	-	-	1	-		-	2	3	2
CO4	1	2	3	2	3	-	-	1	-	-	-	2	3	2

### Assessments :

**Teacher Assessment:** 

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having

50% and 50% weights respectively.		
Assessment	Marks	
ISE	50	
ESE	50	
ISE based on assignment/practical performanc	e/quiz etc.	
ESE: Assessment is based Practical Oriented E	Exam and Oral.	
Course Contents:		
Unit 1: Front End Web Designing and Client sid	le Scripting	
Introduction of HTML and CSS,		
<b>Basics JavaScript:</b>		
Introduction to javascript, Basic program	n of javascript, Function, Event handling In	06 Hrs.
Javascript, Validating HTML form da	ata using javascript, getElementByName,	
getElementById(),, return value, focus,	innerHTML	
Unit 2: Servlet		
Introduction of servlet, servlet life cy	cle, Working with Apache Tomcat Server,	
Servlet Interface, HTTP Servlet, director	ry structure, deployment descriptor-web.xml,	07 Hrs
servlet in Eclipse, ServletRequest meth	ods, reading HTML form data with servlet,	
database connectivity with relational DB	MS	
Unit 3: JSP		
Introduction of JSP, directory structure,	JSP life cycle, JSP API, JSP in eclipse, JSP	
Expressions, JSP Declerations, JSP Scr	iplets, JSP Bulit in objects, including files,	07 Hrs
reading HTML form data with JSP, Data	abase Connectivity with RDBMS, create and	
deploy WAR file		
Unit 4: Getting Started With Spring Boot		
Introduction to MVC, MVC architectur	re and advantages, Spring Boot starters,	
CLI, Gradle plugin, Application class,	@Spring Boot Application, Build as a	
Runnable jar, Dependency injection, co	omponent scans, Configuration, Externalize	07 Hrs.
your configuration using application. P	roperties or YAML files, Context Root and	
Management ports, Logging.		
Unit 5: Building Web Applications In Spring R	oot	
Spring MVC Controllers Using Model Att	tributes, @Request Mapping and @Request	07 Hrs.

	Param, Using a Model And View, Using images and templates for views, Using an	
	Embedded database with Jdbc Template, Executing Sql scripts, Using a production	
	database, JPA Data and JPA Repositories	
Unit 6	: Restful Web Services:	
	REST Overview (Characteristics/Capabilities, URI Templates, REST vs SOAP, REST	
	and Spring MVC, Spring support for REST, @Request Mapping/@Path Variable,	
	@Request Body, HTTP Method conversion, URI Templates and @ Path Variable,	07.11
	Writing RESTful Controllers/@Rest Controller , JSON Representations for Resources,	07 Hrs.
	Message Converters, Generating XML, JAXB and jackson Message Converters for	
	XML, JAXB/@Xml Root Element, Content Negotiation, Client Requirements and	
	Spring's Rest Template	
Text I	Books:	
1.	Core-Servlet and JavaServer Pages Volume – 1, by Marty Hall, Larry Brown, Pearson Educ	cation 2nd
	Edition	
2.	Spring Boot in Action by Walls Craig	
3.	Pro Spring Boot by Felipe Gutierrez	
Refer	ence Books:	
1.	Head First Servlets and JSP: Passing the Sun Certified Web Component Developer	Exam -2nd
	Edition-Bryan Basham, Kathy Sierra, Bert Bates- O'REILLY	
2	Mastering Spring Post 2.0: Duild modern aloud notive and distributed systems using St	nring Doot

 Mastering Spring Boot 2.0: Build modern, cloud-native, and distributed systems using Spring Boot. By Dinesh Rajput

Title o	of the	Cours	se: Dis	tribut	ed Sys	stem La	b				L	Т	Р	C	redit
Cours	of the Course: Distributed System Lab         e Code:UCSE0733         e Pre-Requisite: Knowledge of Operating system, Network         e Description: This course aims at giving students a         is, cluster computing, grid computing and cloud compution         endistributed systems and synchronization algorithms.         e Learning Objectives:         Understand foundation of Distributed Systems         Understand basic concepts of Grid Computing         Understand in detail the system level and support require         Understand principles of High Performance Computing         e Outcomes:         After the completion of the course the student show         be able to         Apply the concepts of communication and simulate synce         systems.         Analyze Grid and cluster computing tools         Develop the Application in Distributed Computing(Google         Explain HPC Case Studies         POI       PO2       PO3       PO6       PO7       PO8       PO9         2       1       2       1       2       1       2         2       1       2       1       2       1       2       1         1       2       1       2       1       2       1       2       1       2 </td <td></td> <td>-</td> <td>-</td> <td>2</td> <td></td> <td>1</td>								-	-	2		1		
Cours	e Pre	-Requ	isite:	Know	ledge	of Ope	rating	system	, Netw	ork Pro	gram	min	3		
Cours	e Des	scripti	ion: T	his c	ourse	aims a	t givi	ng stuc	lents a	ı basic	knov	vledg	ge of	distrit	outed
system	ns, clu	ster c	omput	ing, g	rid co	mputin	g and	cloud c	omput	ting. En	nphas	is or	n com	munic	ation
betwee	en dis	tribute	ed syst	ems a	nd syn	chroniz	zation	algoritl	nms.						
Cours	e Lea	rning	Obje	ctives	:										
1.	. Unc	lerstar	nd four	ndatio	n of D	istribut	ed Sys	stems							
2.	. Unc	lerstar	nd basi	c con	cepts o	of Grid	Comp	uting							
3.	. Unc	lerstar	nd in d	etail t	he sys	tem lev	el and	suppor	t requi	red for	distri	bute	d syst	em	
4	. Unc	lerstar	nd prin	ciples	of Hi	gh Perf	òrman	ce Con	nputing	g					
Cours	e Out	come	s:			_									
	A	fter th	e con	pletio	on of t	he cou	rse the	e stude	nt sho	uld					
CO4	1 be	<u>able</u>	to			·		· 1		1 .		. ·	<u></u>	1	1
		oply th	e conc	epts of	comm	unicatio	on and	simula	te sync	chroniza	tion a	Igori	thms 1	n distri	buted
	• Sy • Ai	nalvze	Grid a	nd clus	ster con	nputing	tools								
CO4	1 De	evelop	the Ap	plicati	on in I	Distribut	ted Cor	nputing	(Googl	e App E	ngine	)			
CO4	4 Ex	xplain 1	HPC Ċ	ase Stu	udies					• •	U 1				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO12	PSO1	PSO2
CO1		2	1	2	1								2		
CO2		2	1	1	1								2		
CO3	1	2	1	2	1								2	1	2
CO4		1	1	2	1								1		
Λεερεί	mont	c •													
Teach	er As	ə . sessm	ent•												
Two c	ompo	nents (	of In S	lemest	ter Eva	aluation	ı (ISE)	and or	ne End	Semest	er Ex	ami	natior	) (ESE	) having
33%, a	and 67	'% we	ights 1	espec	tively.		(102)			~~~~~				. (202	,
Asse	ssmen	t	0		J		N	larks							
ISE							50	0							
ESE	- OE						50	0							
ISE ar	e base	ed on p	oractic	al per	forme	d/ Quiz	/ Mini	-Projec	t assig	ned/ Pre	esenta	ntion	/ Grou	up Dis	cussion/
Interna	al oral	etc.													
ESE: A	Assess	sment	is base	ed on j	practic	al-oral	exami	nation.							
Cours	e Cor	tents	•												
Expe	rimen	t No. 1	l : Imp	lemen	tation	of Ren	note Pr	ocedur	e Call	(RPC) a	and R	MI i	in	02	Hrs.
distri	buted	syster	n.			0-			r	• ~			••		
Expe	rimen m for	t No. 2	2: Imp	lemen	tation	of Ren	note M	ethod 1	nvocat	tion(RN	11) in	dist	ribute	d <b>02</b>	Hrs.
Syster	in ior	$\frac{1}{1}$	erring	nies		ml:+'		Na C - i	~1~ ^	. Ee a in					II
Expe	rimen	t INO. :	s: Crea	ating a	ın Ap	plication	on usir	ig Goo	gieApp	b Engine	e			02	Hrs.

Experiment No. 4: Configure NTP server and Client for clock synchronization									
Experiment No. 5: Simulation of Election algorithms									
Experiment No. 6: Implementation of Mutual Exclusion algorithms	02 Hrs.								
Experiment No. 7: S/W Simulation for Clock Synchronization in Distributed System using	02 Hrs.								
Lamport's Algorithm.									
Experiment No. 8: Simulation of Distributed Commit	02 Hrs.								
Experiment No. 9: Simulation of recovery techniques	02 Hrs.								
Experiment No. 10: HPC-Grid Computing Use Globus Toolkit or equivalent and	02 Hrs.								
Develop a new Web Service for Calculator.									

# **SEMI-II**

Title of	the C	ourse:	Inter	net of	Thing	s						L	Τ	Р	Credit
Course	Code	: UCS	E0801									2	-	-	2
• ( Micro C	Course Contro	e <b>Prere</b> llers, K	<b>quisite</b> Inowle	s: Kno dge of	wledg Progra	e of Co ammin	ompute g lang	er Netw uages s	vorking such as	g, Know C, Ass	embly	of Mie level.	cro	Proce	essors,
Course l aims to	Descri develo	<b>ption:</b> ' op vari	This co ous ap	ourse in plication	ntrodu ons rel	ces the ated to	neces: smart	sary fu cities,	ndame agricu	ental pri lture etc	nciples c.	of In	tern	et of	Things. It
Course	Learı	ning O	bjecti	ves:											
1. To lea	arn ba	sic con	cepts	of Inte	rnet of	Thing	s (IoT)	) Techi	nology						
2.To bec	come	familia	r with	the ba	asics of	f RFID	, senso	or and	GPS te	chnolog	gies				
3.To An	alyze	and ch	loose d	lifferer	nt wire	eless te	chnolo	ogies a	nd IoT	applica	tions				
Course	Outco	omes:													
CO	Aft	er the	comp	letion	of the	course	e the st	tudent	shoul	d be ab	le to				
CO1	Exp (Io	olain ke Г).	ey con	cepts a	nd teri	ninolo	gies re	lated t	o Inter	net of T	hings				
CO2	Coi	npare	differe	nt wire	eless te	chnolo	ogies w	ith res	pect to	IoT.					
CO3	Pro	pose Io	oT solu	ution fo	or real	life pro	blems								
СО-РО	Map	- ping:				-									
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PO	PS	01	PSO2

CO	PO	PO1	PO	PO	PSO1	PSO2								
	1	2	3	4	5	6	7	8	9	0	11	12		
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	2
CO2	-	2	-	2	-	-	-	-	-	-	-	-	-	2
CO3	-	-	2	2	1	1	-	-	-	-	-	-	3	2

# **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

# **Course Contents:**

<b>UNIT-I</b> :Introduction to Internet of Things& Python Programming:- Introduction, Physical design of IoT, Logical design of IoT, IoT Enabling Technologies,IoT Levels &deployment Templates. Features of Python, Identifiers, variables, operators, Input/Output, Setting up python programming environment	06 Hrs.
UNIT-II: Fundamental IoT Mechanisms & Key Technologies : Structural aspects of the IoT:Environment characteristics, Traffic characteristics ,scalability, Interoperability, Security and Privacy, Open architecture, Key IoTTechnologies:Device Intelligence, Communication capabilities, Mobility support, Device Power, Sensor Technology, RFID technology, Satellite Technology. Evolving IoT Standards: IETF IPv6 Routing Protocol for RPL Roll, Constrained Application Protocol(CoAP), REST, 6LoWPAN, ZigBee IP(ZIP)	06 Hrs.
UNIT-III: IoT Systems- Logical design using Python Introduction, Python Data Types & data structures, Control Flow, Functions, Modules, Packages, File Handling, Date/Time operations, Classes.	05 Hrs.
UNIT-IV: IoT Physical Devices & Endpoints: What is an IoT device, Exemplary Device: Raspberry Pi, About the board, Linux on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python	04 Hrs.
<b>UNIT-V: IoT Physical Servers and Cloud Offerings :</b> Introduction to Cloud storage models and communication API's, WAMP –AutoBahn for IoT, Amazon web services for IoT	05 Hrs.
<b>UNIT-VI: Case studies Illustrating IoT Design:</b> Introduction, Home automation, cities, Environment, Agriculture, Productivity applications.	04 Hrs.
<ul> <li>Textbooks:         <ol> <li>Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Un 2. Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, Daniel Minoli, Wiley Publications.</li> </ol> </li> <li>References:         <ol> <li>The Internet of Things: Connecting Objects to the Web, HakimaChaouchi, Wiley Publications</li> </ol> </li> </ul>	it 1,3,4,5,6) . [

Title of the Course: Cloud Computing	L	Т	Р	Credit
Course Code: UCSE0802	3	I	-	3

**Course Pre-Requisite:** 

- **1.** Computer Networks
- 2. Operating System-I
- **3.** Information Security

**Course Description:** Cloud Computingsubject mainly deals with the science of cloud computing covering aspects such as – evolution of cloud environment, its architecture, types, prominent cloud platform examples, virtualization techniques and migration, docker-container & Kubernetes, security and management.

#### **Course Learning Objectives:**

To expose students to:

- 1. Cloud Computing platform & Its architecture
- 2. Virtualization tools and techniques
- 3. Need of migration to cloud and virtual machine provisioning
- 4. Advanced concepts docker, container and Kubernetes
- 5. Security & management concerns.

#### **Course Outcomes:**

CO	After the completion of the course the student should be able to -
CO1	Summarize the evolution of cloud and its basic concepts.
CO2	Summarize virtualization techniques, migration and provisioning of VM's in cloud environment.
CO3	Compare different architectures and platforms of cloud computing.
<b>CO4</b>	Interpret the advanced concepts, security and management in cloud computing

#### **CO-PO Mapping:**

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												1	
CO2	2		1									2		
CO3	2											1	1	
CO4	2							2					1	

#### Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30

		10					
	ISE 2	10					
	ESE	50					
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 60-70% weight age for course content ( last three modules) covered after MSE.							
С	ourse Contents:						
U	nit 1: Introduction						
D	efinition, Historical Developments, Computing Pla	tforms and Technologies. Building cloud					
co	mputing environments. Principles of Parallel and	Distributed Computing: Parallel versus	06 Hrs				
Distributed Computing Elements of Parallel Computing Elements of Distributed Computing							
20	d Technologies for Distributed Computing	ling, Elements of Distributed Computing,					
TL.	it 2: Vistualization						
	III 2: VITUAIIZATION	zation and Cloud Computing Pros and	07 II				
C	and of Virtualization	zation and Cloud Computing, Flos and	U6 Hrs.				
U	ait 3: Cloud Computing Architecture						
CI	oud Reference Model, Types of Clouds – Public,	, Private, Hybrid and Community cloud,	07 Hrs.				
Types of Services - IaaS, PaaS, SaaS, Economics of Clouds, Open Challenges, Public							
Clouds: Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure.							
U	nit 4: Migration into cloud and Virtual machine	Provisioning					
Bı	coad Approaches to Migrating into the Cloud, The	e Seven-Step Model of Migration into a	AC 11				
Cl	oud, Virtual Machines Provisioning and Man	ageability, Virtual Machine Migration	06 Hrs.				
Se	rvices, VM Provisioning and Migration in Action,	Provisioning in the Cloud Context.					
U	nit 5: Advanced Concents – Docker, Container a	und Kubernetes:					
In	troduction to CaaS Why containers? Difference be	tween Virtualization and Containers					
In	troduction to Containers. Docker and its arch	nitecture (Jain) Understanding Docker					
	antoiner Networking Kuberentes Introduction A	rehitecture (Jahr), Understanding Docker	04 Hrs.				
C	Studie (American studie available on the Internet	t such as IDM AWS Coopele Orviteland					
Ca	ise Study (Any case study available on the Internet	t such as - IBM, AWS, Google Qwiklabs					
us	ing Kubernetes, docker container).						
U	nit 6: Cloud Security & Management:						
Fι	indamental cloud security – Basic terms and conce	pts, Threat agents, cloud security threats,	07 Hrs				
ca	se study example. Cloud Management Mechanis	ms - SLA management and case study.	07 1113.				
Cl	oud Security Mechanisms - PKI, IAM and SSO w	ith case studies.					
T	extbooks:						
1.	Mastering Cloud Computing - Buyya R, Vecchiol	a C, Selvi S T, McGraw Hill Education (Ir	ndia), 2013				
(U	(nit 1,2,3)						
2.	2. Cloud Computing - Principles and Paradigms - Buyya R, Broberg J, Goscinski A, Wiley, 2011 (Unit 4						
3.	Cloud Computing Concepts, Technology & Ar	chitecture - Thomas Erl, Zaigham Mahr	nood, and				
Ri	Ricardo Puttini, (Unit 6)						
4.	4. A to z on Docker: A complete Hands-On Guide to Docker Container – Swapnil Jain (Unit 5)						
5.	Docker Cookbook - Sébastien Goasguen, O'reilly	Nov. 2015 First Edition (Unit 5)					
R	eferences:						
1.	Cloud Computing Bible - Barrie Sosinsky ,Wiley	Publishing Inc. 2011(Unit,6)					
2.	Cloud Native DevOps with Kubernetes – John Ar	rundel and Justin Domingus (Unit 5)					

Title of th	e Course: IoT Lab	L	Т	Р	Credit			
Course C	ode: UCSE0831	-	-	2	1			
• <b>Course Prerequisites:</b> Knowledge of Computer Networking, Knowledge of Micro Processors, Micro Controllers, Knowledge of Programming languages such as C, Assembly level.								
Course De aims to de	scription: This course introduces the necessary fundamental principles o velop various applications related to smart cities, agriculture etc.	f Int	ern	et of T	Things. It			
Course O 1. Implem	<b>bjectives:</b> ent basic programs using Python.							
2. Make u	se of various sensors using Raspberry Pi& Intel Galileo kits.							
Course Lo	earning Outcomes:							
СО	After the completion of the course the student should be able to							
CO1	Identify and solve the problems using Python.							
CO2	Experiment with Raspberry Pi kit.							
CO3	Experiment with Intel Galileo kit.							
CO-PO N	lanning.							

# CO-PO Mapping:

CO	PO	PO1	PO	PO	PSO1	PSO2								
	1	2	3	4	5	6	7	8	9	0	11	12		
CO1	3	2	-	-	3	-	-	-	-	-	-	-	-	-
CO2	-	-	-	2	3	2	-	-	-	-	-	-	-	2
<b>CO3</b>	-	-	-	2	3	2	-	-	-	-	-	-	-	2

#### **Assessments** :

### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Experiment No. 1: A im and Objectives: To understand data types in python, controlling statements, functions and variable scope in python. Theoretical Background: Identifiers, reserved keywords, variables, comments, operators, numbers02 Hrs.Experimentation: Write a program to check the number is prime or not.02 Hrs.Experimentation: Socket programming Experimentation: Implement simple client server model Theoretical Background: Socket programming Experimentation: Implement simple client server message passing program02 Hrs.Experiment No. 3: File Read/Write operation in python Aim and Objectives: Understand file operation using python Theoretical Background: Basics of file handling Experiment No. 4: Basics setup for Raspberry Pi Aim and Objectives: To understand Raspberry Pi Pi Pin configuration, Raspberry Pi os setup02 Hrs.Experiment No. 5: Blinking LED Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experiment No. 6: Blinking LED Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Raspberry Pi Experiment No. 6: Blinking LED Aim and Objectives: Writeprogram to implement blinking LED using Intel Galileo kit. Experiment No. 7: Implementation of IoT with Raspberry Pi Aim and Objectives: Writeprogram to implement application with Raspberry Pi Experiment No. 8: Implementation of IoT with Intel Galileo kit Experiment No. 8: Implementation of IoT with Intel Galileo kit02 Hrs.Experiment No. 8: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implementation of IoT w	Course Contents:	
controlling statements, functions and variable scope in python.         Theoretical Background: Identifiers, reserved keywords, variables, comments, operators, numbers         Experimentation: Write a program to check the number is prime or not.         Experiment No. 2: Networking in python       02 Hrs.         Aim and Objectives: To understand client server model       02 Hrs.         Theoretical Background: Socket programming       02 Hrs.         Experimentation: Implement simple client server message passing program       02 Hrs.         Aim and Objectives: Understand file operation using python       02 Hrs.         Theoretical Background: Basics of file handling       02 Hrs.         Experimentation: Write a program to implement file read write operation using python       02 Hrs.         Aim and Objectives: Inderstand Raspberry Pi Pi Pi nc onfiguration, Raspberry Pi os setup       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experiment No. 6: Blinking LED       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experiment No. 6: Blinking LED       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Theoretical Background: Python programming       0	Experiment No. 1: Aim and Objectives: To understand data types in python,	02 Hrs.
Theoretical Background: Identifiers, reserved keywords, variables, comments, operators, numbers       Operators, numbers         Experimentation: Write a program to check the number is prime or not.       02 Hrs.         Aim and Objectives: To understand client server model       02 Hrs.         Theoretical Background: Socket programming       02 Hrs.         Experimentation: Implement simple client server message passing program       02 Hrs.         Experiment No. 3: File Read/Write operation in python       02 Hrs.         Aim and Objectives: Understand file operation using python       02 Hrs.         Theoretical Background: Basics of file handling       02 Hrs.         Experiment No. 4: Basic setup for Raspberry Pi       02 Hrs.         Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup       02 Hrs.         Experiment No. 5: Blinking LED       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Theoretical Background: Python programming       Experiment No. 6: Blinking LED         Experiment No. 6: Blinking LED       02 Hrs.         Theoretical Background: Sensor, Actuators       Experiment No. 7: Implementation of IoT with Raspberry Pi         Experiment No. 7: Implementation of IoT with Intel Galileo kit       02 Hrs.         Experiment No. 7: Implementation of IoT with Intel Galileo kit       02 Hrs.         Experiment No.	controlling statements, functions and variable scope in python.	
operators, numbers       Experimentation: Write a program to check the number is prime or not.         Experimentation: Write a program to check the number is prime or not.       02 Hrs.         Aim and Objectives: To understand client server model       02 Hrs.         Theoretical Background: Socket programming       02 Hrs.         Experimentation: Implement simple client server message passing program       02 Hrs.         Aim and Objectives: Understand file operation using python       02 Hrs.         Experimentation: Write a program to implement file read write operation using python       02 Hrs.         Experiment No. 4: Basic setup for Raspberry Pi       02 Hrs.         Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup       02 Hrs.         Experiment No. 5: Blinking LED       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Theoretical Background: Python programming       Experimentation: Write a program to implement blinking LED using Raspberry Pi         Experiment No. 6: Blinking LED       02 Hrs.         Theoretical Background: Sensor, Actuators       Experiment No. 7: Implementation of IoT with Raspberry Pi         Experiment No. 8: Implementation of IoT with Intel Galileo kit       02 Hrs         Experiment No. 8: Implementation of IoT with Intel Galileo kit       02 Hrs         Experiment No. 8: Implementation of IoT with Intel Galileo kit	Theoretical Background: Identifiers, reserved keywords, variables, comments,	
Experimentation: Write a program to check the number is prime or not.02 Hrs.Experiment No. 2: Networking in python Aim and Objectives: To understand client server model Theoretical Background: Socket programming Experimentation: Implement simple client server message passing program02 Hrs.Experiment No. 3: File Read/Write operation in python Aim and Objectives: Understand file operation gython Theoretical Background: Backs: so of file handling Experiment No. 4: Basic setup for Raspberry Pi Aim and Objectives: To understand Raspberry Pi Aim and Objectives: To understand Raspberry Pi Pi Pin configuration, Raspberry Pi os setup02 Hrs.Experiment No. 5: Blinking LED Maim and Objectives: Installing GPIO library Theoretical Background: Python programming Experiment No. 6: Blinking LED Experiment No. 6: Blinking LED Experiment No. 7: Implementation of IoT with Raspberry Pi Aim and Objectives: Write a program to implement blinking LED using Intel Galileo kit.02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi Aim and Objectives: Write program to implement application with Raspberry Pi Experiment No. 7: Implementation of IoT with Intel Galileo kit02 Hrs.Experiment No. 8: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implementation of IoT with Intel Galileo kit Experiment No. 0: Implement Buzzer sensor interface Intel Galileo kit Experiment No. 0: Implement Surver sensor interface Intel Galileo kit Experiment No. 0: Implement Sur	operators, numbers	
Experiment No. 2: Networking in python02 Hrs.Aim and Objectives: To understand client server model02 Hrs.Theoretical Background: Socket programming02 Hrs.Experimentation: Implement simple client server message passing program02 Hrs.Experiment No. 3: File Read/Write operation in python02 Hrs.Aim and Objectives: Understand file operation using python02 Hrs.Experiment No. 4: Basic soft file handling02 Hrs.Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: To understand Raspberry Pi02 Hrs.Aim and Objectives: Installing GPIO library02 Hrs.Aim and Objectives: Installing GPIO library02 Hrs.Theoretical Background: Python programming02 Hrs.Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library02 Hrs.Theoretical Background: Python programming02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 Hrs.Aim and Objectives: Writerogram to implement application with Raspberry Pi02 Hrs.Theoretical Background: Sensor, Actuators02 HrsExperiment No. 8: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 8: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implement OHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implement OHT sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Towch sensor interface Intel Galileo kit02 Hrs	<b>Experimentation:</b> Write a program to check the number is prime or not.	
Experiment No. 2: Networking in python02 Hrs.Aim and Objectives: To understand client server model02 Hrs.Theoretical Background: Socket programming02 Hrs.Experimentation: Implement simple client server message passing program02 Hrs.Aim and Objectives: Understand file operation using python02 Hrs.Theoretical Background: Basics of file handling02 Hrs.Experimentation: Write a program to implement file read write operation using python02 Hrs.Aim and Objectives: To understand Raspberry Pi02 Hrs.Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup02 Hrs.Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library02 Hrs.Theoretical Background: Python programming02 Hrs.Experiment No. 6: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library02 Hrs.Theoretical Background: Python programming02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 Hrs.Aim and Objectives: Writeprogram to implement application with Raspberry Pi02 Hrs.Aim and Objectives: Sensor, Actuators22 Hrs.Experiment No. 8: Implement OHT sensor interface with Raspberry Pi02 Hrs.Experiment No. 9: Implementation of IoT with Intel Galileo kit02 Hrs.Experiment No. 9: Implementation of IoT with Intel Galileo kit02 Hrs.Experiment No. 9: Implementation of IoT with Intel Galileo kit02 Hrs.Experiment No. 9: Implementation of IoT with Intel Galileo kit02 Hrs.Exper		
Aim and Objectives: To understand client server model       Theoretical Background: Socket programming         Experimentation: Implement simple client server message passing program       02 Hrs.         Aim and Objectives: Understand file operation using python       02 Hrs.         Aim and Objectives: Understand file operation using python       02 Hrs.         Experiment No. 3: File Read/Write operation using python       02 Hrs.         Aim and Objectives: Understand Raspberry Pi       02 Hrs.         Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup       02 Hrs.         Experiment No. 5: Blinking LED       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Aim and Objectives: Python programming       02 Hrs.         Experiment No. 6: Blinking LED       02 Hrs.         Aim and Objectives: Write a program to implement blinking LED using Raspberry Pi       02 Hrs.         Experiment No. 7: Implementation of IoT with Raspberry Pi       02 Hrs.         Aim and Objectives: Write program to implement application with Raspberry Pi       02 Hrs.         Aim and Objectives: Write program to implement application with Raspberry Pi       02 Hrs.         Theoretical Background: Sensor, Actuators       Experiment No. 6: Blinking LED       02 Hrs.         Aim and Objectives: Writeprogram to implement application with Raspberry Pi       02 Hrs </td <td>Experiment No. 2: Networking in python</td> <td>02 Hrs.</td>	Experiment No. 2: Networking in python	02 Hrs.
Theoretical Background: Socket programming       02 Hrs.         Experiment No. 3: File Read/Write operation in python       02 Hrs.         Aim and Objectives: Understand file operation using python       02 Hrs.         Theoretical Background: Basics of file handling       02 Hrs.         Experiment No. 4: Basic setup for Raspberry Pi       02 Hrs.         Aim and Objectives: To understand Raspberry Pi       02 Hrs.         Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup       02 Hrs.         Experiment No. 5: Blinking LED       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experiment No. 6: Blinking LED       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experiment No. 7: Implementation of IoT with Raspberry Pi       02 Hrs.         Experiment No. 8: Implement DHT sensor interface with Raspberry Pi       02 Hrs         Experiment No. 9: Implement DHT sensor interface with Raspberry Pi       02 Hrs.         Experiment No. 9: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Experiment No. 9: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Experiment No. 9: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Experiment No. 9: Impl	Aim and Objectives: To understand client server model	
Experimentation: Implement simple client server message passing program02 Hrs.Experiment No. 3: File Read/Write operation using python02 Hrs.Aim and Objectives: Understand file operation using python02 Hrs.Theoretical Background: Basics of file handling02 Hrs.Experimentation: Write a program to implement file read write operation using python02 Hrs.Experiment No. 4: Basic setup for Raspberry Pi02 Hrs.Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os02 Hrs.Setup02 Hrs.Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experiment No. 6: Blinking LED02 Hrs.Experiment No. 6: Blinking LED02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 HrsExperiment No. 8: Implement DHT sensor interface with Raspberry Pi02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 Hrs<	Theoretical Background: Socket programming	
Experiment No. 3: File Read/Write operation in python02 Hrs.Aim and Objectives: Understand file operation using python02 Hrs.Theoretical Background: Basics of file handling02 Hrs.Experimentation: Write a program to implement file read write operation using python02 Hrs.Experiment No. 4: Basic setup for Raspberry Pi02 Hrs.Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os02 Hrs.Setup02 Hrs.Aim and Objectives: Installing GPIO library02 Hrs.Theoretical Background: Python programming02 Hrs.Experiment No. 6: Blinking LED02 Hrs.Theoretical Background: Python programming02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 Hrs.Aim and Objectives: Write program to implement blinking LED using Intel Galileo kit.02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 Hrs.Aim and Objectives: Writeprogram to implement application with Raspberry Pi02 Hrs.Aim and Objectives: Writeprogram to implement application with Raspberry Pi02 Hrs.Experiment No. 8: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 10: Implementati	Experimentation: Implement simple client server message passing program	
Experiment No. 3: File Read/Write operation in python02 Hrs.Aim and Objectives: Understand file operation using python02 Hrs.Theoretical Background: Basics of file handling02 Hrs.Experiment No. 4: Basic setup for Raspberry Pi02 Hrs.Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup02 Hrs.Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Raspberry Pi02 Hrs.Experiment No. 6: Blinking LED02 Hrs.Aim and Objectives: Write a program to implement blinking LED using Raspberry Pi02 Hrs.Experimentation: Write a program to implement blinking LED using Intel Galileo kit.02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsTheoretical Background: Sensor, Actuators Experiment No. 8: Implement DHT sensor interface with Raspberry Pi02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Guzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Touch sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Touch sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Touch sensor interface Intel		
Aim and Objectives: Understand file operation using python       Theoretical Background: Basics of file handling         Experimentation: Write a program to implement file read write operation using python       02 Hrs.         Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup       02 Hrs.         Experiment No. 4: Basic setup for Raspberry Pi Pin configuration, Raspberry Pi os setup       02 Hrs.         Experiment No. 5: Blinking LED       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Theoretical Background: Python programming       Experimentation: Write a program to implement blinking LED using Raspberry Pi         Experiment No. 6: Blinking LED       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experiment No. 7: Implementation of IoT with Raspberry Pi       02 Hrs         Aim and Objectives: Writeprogram to implement application with Raspberry Pi       02 Hrs         Theoretical Background: Sensor, Actuators       Experiment No. 7: Implementation of IoT with Intel Galileo kit       02 Hrs         Experiment No. 8: Implement OHT sensor interface Intel Galileo kit       02 Hrs       02 Hrs         Experiment No. 9: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs       02 Hrs         Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs       02 Hrs         Experiment No. 9: Implem	Experiment No. 3: File Read/Write operation in python	02 Hrs.
Theoretical Background: Basics of file handling       02 Hrs.         Experiment No. 4: Basic setup for Raspberry Pi       02 Hrs.         Aim and Objectives: To understand Raspberry Pi Pi no configuration, Raspberry Pi os setup       02 Hrs.         Experiment No. 5: Blinking LED       02 Hrs.         Aim and Objectives: Installing GPIO library       02 Hrs.         Factor of the a program to implement blinking LED using Raspberry Pi       02 Hrs.         Experiment No. 6: Blinking LED       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experiment No. 6: Blinking LED       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experiment No. 6: Blinking LED       02 Hrs.         Theoretical Background: Sensor, Actuators       02 Hrs.         Experiment No. 7: Implementation of IoT with Raspberry Pi       02 Hrs         Aim and Objectives: Writeprogram to implement application with Raspberry Pi       02 Hrs         Aim and Objectives: Writeprogram to implement application with Raspberry Pi       02 Hrs         Experiment No. 8: Implementation of IoT with Intel Galileo kit       02 Hrs         Experiment No. 8: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Experiment No. 9: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Experiment No. 10: Implementation o	Aim and Objectives: Understand file operation using python	
Experimentation: Write a program to implement file read write operation using pythonExperiment No. 4: Basic setup for Raspberry Pi02 Hrs.Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup02 Hrs.Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experiment No. 6: Blinking LED02 Hrs.Experiment No. 6: Blinking LED02 Hrs.Theoretical Background: Python programming Experiment No. 6: Blinking LED02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 HrsAim and Objectives: Write a program to implement blinking LED using Intel Galileo kit.02 HrsExperiment No. 7: Implementation of IoT with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsExperiment No. 8: Implement DHT sensor interface with Raspberry Pi02 HrsExperimentation: Implement DHT sensor interface Intel Galileo kit02 HrsExperimentation: Implement DHT sensor interface Intel Galileo kit02 HrsExperimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperimen	Theoretical Background: Basics of file handling	
Experiment No. 4: Basic setup for Raspberry Pi Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup02 Hrs.Experiment No. 5: Blinking LED Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Raspberry Pi02 Hrs.Experiment No. 6: Blinking LED Experimentation: Write a program to implement blinking LED using Intel Galileo kit.02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi Aim and Objectives: Writeprogram to implement application with Raspberry Pi Theoretical Background: Sensor, Actuators Experiment No. 8: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implement DHT sensor interface Intel Galileo kit Experiment No. 9: Implement Of IoT with Intel Galileo kit02 HrsExperiment No. 10: Implement DHT sensor interface Intel Galileo kit Experiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Buzzer sensor interface Intel Galileo kit Experiment No. 10: Implement Sensor, Actuators Experiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Of IoT with Intel Galileo kit Experiment No. 10: Implement Sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Buzzer sensor interface Intel Galileo kit Experimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Touch sensor interface Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Touch sensor interface Intel Galileo kit <td><b>Experimentation:</b> Write a program to implement file read write operation using python</td> <td></td>	<b>Experimentation:</b> Write a program to implement file read write operation using python	
Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os setup02 Hrs.Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Raspberry Pi02 Hrs.Experiment No. 6: Blinking LED02 Hrs.Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Intel Galileo kit.02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi Aim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi Theoretical Background: Sensor, Actuators Experiment No. 8: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Support S	Experiment No. 4: Basic setup for Raspberry Pi	02 Hrs.
setup02 Hrs.Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Raspberry Pi02 Hrs.Experiment No. 6: Blinking LED02 Hrs.Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Intel Galileo kit.02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi Aim and Objectives: Writeprogram to implement application with Raspberry Pi Theoretical Background: Sensor, Actuators Experiment No. 8: Implement DHT sensor interface with Raspberry Pi Experimentation: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Sensor, Actuators Experiment No. 10: Implement Sensor, Actuators Experiment No. 10: Implement Sensor, Actuators Experiment No. 10: Implement Sensor, Actuators Experimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Sensor, Actuators Experiment No. 10: Implement Sensor, Actuators Experimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experiment No. 10: Implement Sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experiment No. 10: Implement Sensor int	Aim and Objectives: To understand Raspberry Pi Pin configuration, Raspberry Pi os	
Experiment No. 5: Blinking LED02 Hrs.Aim and Objectives: Installing GPIO library Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Raspberry Pi02 Hrs.Experiment No. 6: Blinking LED Theoretical Background: Python programming Experimentation: Write a program to implement blinking LED using Intel Galileo kit.02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi Aim and Objectives: Writeprogram to implement application with Raspberry Pi Theoretical Background: Sensor, Actuators Experiment No. 8: Implement DHT sensor interface with Raspberry Pi Experiment No. 8: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit Experiment No. 9: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implement DHT sensor interface Intel Galileo kit Experiment No. 9: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implement Buzzer sensor interface Intel Galileo kit Experiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Touch sensor interface Intel Galileo kit Experimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Touch sensor interface Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit	setup	
Aim and Objectives: Installing GPIO library         Theoretical Background: Python programming         Experimentation: Write a program to implement blinking LED using Raspberry Pi         Experiment No. 6: Blinking LED       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experimentation: Write a program to implement blinking LED using Intel Galileo kit.       02 Hrs.         Experiment No. 7: Implementation of IoT with Raspberry Pi       02 Hrs         Aim and Objectives: Writeprogram to implement application with Raspberry Pi       02 Hrs         Kim and Objectives: Writeprogram to implement application with Raspberry Pi       02 Hrs         Experiment No. 7: Implementation of IoT with Raspberry Pi       02 Hrs         Kim and Objectives: Writeprogram to implement application with Raspberry Pi       02 Hrs         Experiment No. 8: Implement DHT sensor interface with Raspberry Pi       02 Hrs         Experiment No. 9: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Experiment No. 9: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Experiment No. 10: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Experiment No. 10: Implement Touch sensor interface Intel Galileo kit       02 Hrs         Experimentation: Implement Touch sensor interface Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators	Experiment No. 5: Blinking LED	02 Hrs.
Theoretical Background: Python programming       02 Hrs.         Experimentation: Write a program to implement blinking LED using Raspberry Pi       02 Hrs.         Theoretical Background: Python programming       02 Hrs.         Experimentation: Write a program to implement blinking LED using Intel Galileo kit.       02 Hrs.         Experimentation: Write a program to implement blinking LED using Intel Galileo kit.       02 Hrs.         Experiment No. 7: Implementation of IoT with Raspberry Pi       02 Hrs.         Aim and Objectives: Writeprogram to implement application with Raspberry Pi       02 Hrs         Theoretical Background: Sensor, Actuators       Experimentation: Implement DHT sensor interface with Raspberry Pi         Experiment No. 8: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       Experimentation: Implement DHT sensor interface Intel Galileo kit         Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       Experimentation: Implement Buzzer sensor interface Intel Galileo kit         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       Experimentation: Implement Touch sensor interface Intel Galileo kit         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuator	Aim and Objectives: Installing GPIO library	
Experimentation: Write a program to implement blinking LED using Raspberry PiExperiment No. 6: Blinking LED02 Hrs.Theoretical Background: Python programming02 Hrs.Experimentation: Write a program to implement blinking LED using Intel Galileo kit.02 HrsExperiment No. 7: Implementation of IoT with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsTheoretical Background: Sensor, Actuators22 HrsExperiment No. 8: Implement DHT sensor interface with Raspberry Pi02 HrsExperiment No. 8: Implement DHT sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperiment No. 9: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Touch sensor interface Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 Hrs <td< td=""><td>Theoretical Background: Python programming</td><td></td></td<>	Theoretical Background: Python programming	
Experiment No. 6: Blinking LED02 Hrs.Theoretical Background: Python programming02 Hrs.Experimentation: Write a program to implement blinking LED using Intel Galileo kit.02 Hrs.Experiment No. 7: Implementation of IoT with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsTheoretical Background: Sensor, Actuators02 HrsExperiment No. 8: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement DHT sensor interface with Raspberry Pi02 HrsExperimentation: Implement DHT sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperiment of Things: A Hands-On Approach By Arshd	<b>Experimentation:</b> Write a program to implement blinking LED using Raspberry Pi	
Theoretical Background: Python programmingO2 HrsExperimentation: Write a program to implement blinking LED using Intel Galileo kit.02 HrsExperiment No. 7: Implementation of IoT with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsTheoretical Background: Sensor, ActuatorsExperimentation: Implement DHT sensor interface with Raspberry PiExperiment No. 8: Implementation of IoT with Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperiment No. 9: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsSensor, ActuatorsExperimentation: Implement Touch sensor interface Intel Galileo kitExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsExperimentation: Implement Touch	Experiment No. 6: Blinking LED	02 Hrs.
Experimentation: Write a program to implement blinking LED using Intel Galileo kit.Experiment No. 7: Implementation of IoT with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsTheoretical Background: Sensor, Actuators22 HrsExperimentation: Implement DHT sensor interface with Raspberry Pi02 HrsExperiment No. 8: Implementation of IoT with Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperimentation: Implement DHT sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators22 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators22 HrsExperimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators22 HrsExperiment No. 10: Implement Touch sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators23 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Theoretical Background: Python programming	
Experiment No. 7: Implementation of IoT with Raspberry Pi02 HrsAim and Objectives: Writeprogram to implement application with Raspberry Pi02 HrsTheoretical Background: Sensor, Actuators20 HrsExperimentation: Implement DHT sensor interface with Raspberry Pi02 HrsExperiment No. 8: Implementation of IoT with Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperimentation: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implement DHT sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperimentation: Implement DHT sensor interface Intel Galileo kit02 HrsExperiment No. 9: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsExperiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators02 HrsExperimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTextbooks:3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	<b>Experimentation:</b> Write a program to implement blinking LED using Intel Galileo kit.	
Aim and Objectives: Writeprogram to implement application with Raspberry Pi         Theoretical Background: Sensor, Actuators         Experiment No. 8: Implement DHT sensor interface with Raspberry Pi         Experiment No. 8: Implement DHT sensor interface Intel Galileo kit         O2 Hrs         Experiment No. 9: Implement DHT sensor interface Intel Galileo kit         Experiment No. 9: Implement DHT sensor interface Intel Galileo kit         Experiment No. 9: Implement Buzzer sensor interface Intel Galileo kit         Experiment No. 10: Implement Buzzer sensor interface Intel Galileo kit         Experiment No. 10: Implement Touch sensor interface Intel Galileo kit         Theoretical Background: Sensor, Actuators         Experiment No. 10: Implement Buzzer sensor interface Intel Galileo kit         Theoretical Background: Sensor, Actuators         Experiment No. 10: Implement Touch sensor interface Intel Galileo kit         Theoretical Background: Sensor, Actuators         Experimentation: Implement Touch sensor interface Intel Galileo kit         Textbooks:         3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Experiment No. 7: Implementation of IoT with Raspherry Pi	02 Hrs
Theoretical Background: Sensor, Actuators         Experimentation: Implement DHT sensor interface with Raspberry Pi         Experiment No. 8: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 9: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs         Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs         Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implement Touch sensor interface Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Touch sensor interface Intel Galileo kit       02 Hrs         3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6) .       0.	Aim and Objectives: Writeprogram to implement application with Raspberry Pi	02 1115
Experimentation: Implement DHT sensor interface with Raspberry Pi         Experiment No. 8: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 9: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Touch sensor interface Intel Galileo kit       02 Hrs         Textbooks:       3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Theoretical Background: Sensor Actuators	
Experiment No. 8: Implementation of IoT with Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experimentation: Implement DHT sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experimentation: Implement Buzzer sensor interface Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experiment No. 10: Implementation of IoT with Intel Galileo kit02 HrsTheoretical Background: Sensor, Actuators Experimentation: Implement Touch sensor interface Intel Galileo kit02 HrsTextbooks: 3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).04 Hrs	<b>Experimentation:</b> Implement DHT sensor interface with Raspberry Pi	
Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Touch sensor interface Intel Galileo kit       02 Hrs         Textbooks:       3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Experiment No. 8: Implementation of IoT with Intel Galileo kit	02 Hrs
Experimentation: Implement DHT sensor interface Intel Galileo kit       02 Hrs         Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Touch sensor interface Intel Galileo kit       02 Hrs         3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).       0.	Theoretical Background: Sensor Actuators	<b>U2</b> 1115
Experiment No. 9: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Touch sensor interface Intel Galileo kit       02 Hrs         Textbooks:       3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	<b>Experimentation:</b> Implement DHT sensor interface Intel Galileo kit	
Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Buzzer sensor interface Intel Galileo kit       02 Hrs         Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Touch sensor interface Intel Galileo kit       02 Hrs         Textbooks:       3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Experiment No. 9: Implementation of IoT with Intel Galileo kit	02 Hrs
Experimentation: Implement Buzzer sensor interface Intel Galileo kit         Experiment No. 10: Implementation of IoT with Intel Galileo kit         Theoretical Background: Sensor, Actuators         Experimentation: Implement Touch sensor interface Intel Galileo kit         Textbooks:         3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Theoretical Background: Sensor Actuators	<b>V2</b> 1115
Experiment No. 10: Implementation of IoT with Intel Galileo kit       02 Hrs         Theoretical Background: Sensor, Actuators       02 Hrs         Experimentation: Implement Touch sensor interface Intel Galileo kit       02 Hrs         Textbooks:       3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	<b>Experimentation:</b> Implement Buzzer sensor interface Intel Galileo kit	
Theoretical Background: Sensor, Actuators         Experimentation: Implement Touch sensor interface Intel Galileo kit         Textbooks:         3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Experiment No. 10: Implementation of IoT with Intel Calileo kit	02 Hrs
Experimentation: Implement Touch sensor interface Intel Galileo kit         Textbooks:         3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Theoretical Background: Sensor Actuators	02 1115
<b>Textbooks:</b> 3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	<b>Experimentation:</b> Implement Touch sensor interface Intel Galileo kit	
3. Internet of Things: A Hands-On Approach By ArshdeepBahga, Vijay Madisetti (Unit 1,3,4,5,6).	Textbooks.	
5. momentor finnings. A francis-on Approach by Arsnucepbanga, vijay Maulseur (Onit 1,5,4,5,0).	3 Internet of Things: A Hands-On Annroach Ry Arshdeen Rahga Vijay Madisatti (Ur	13456
	5. Internet of Finings. A francis-On Approach by Arshucepbanga, vijay Maulsetti (Of	m 1,2, <b>∓</b> ,2,0 <i>J</i> .
References	References	

#### Guidelines for Internship , Project –I & Project –II

As per the approved academic structure, students will be allowed to take internships during the 8th semester of B.Tech program. Below are the guidelines/rules and regulations for the students willing to opt for the internship -

- 1. During 7th semester students have the option of forming project groups. The number of members working in one project can vary from 1 member to a maximum of 4 members. Students working independently have an option to work on the project assigned to him/her by the organization which has accepted him/her as an intern. However, students working on a project in a group must complete a separate inhouse project, despite the internship.
- 2. The students, who do not have any internship opportunity at the beginning of the 7th semester, have to complete the inhouse project compulsory. Even though you may get an internship/sponsored project by the end of the 7th semester or during the 8th semester.
- 3. The internship duration can be between 16 weeks to 20 weeks. Students who get the internship will be exempted from attendance of lectures and practicals of courses during 8th semester. These students must have to complete all the ISE activities of 8th Semester using LMS (Learning Management System- KIT Moodle). It will be mandatory to all students (including internship students) to appear for the Mid Semester Exam (MSE) and End Semester Exams (ESE). Failing to do so, you will not be considered for the award of B. Tech degree. There will not be any extension/exemption from MSE and ESE exams. The rest of the rules and regulations related to academics and exam are all applied as it is.
- 4. Students who are not getting any internship have to compulsorily attend all the lectures and practicals of the 8th Semester. They will be governed by the regular academic policies which include - mandatory attendance criteria, failing to meet the attendance criteria students will be detained.
- 5. The department holds the final authority to accept or reject the internship offered to students. Department will check the credibility of the organization offering the internship to students. If the department finds the internship is unworthy, then students will not be allowed to join the organization. Such students are bound to complete the regular academics (including 8th-semester lectures and practical's).